
WIRELESS COMMUNICATIONS AND MOBILE COMPUTING
Wirel. Commun. Mob. Comput. 2013; 13:663–670

Published online 31 March 2011 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/wcm.1129

RESEARCH ARTICLE

A fast low-density parity-check code simulator based
on compressed parity-check matrices
Shek F. Yau1, Tan L. Wong1, Francis C. M. Lau1 and Yejun He2*

1 Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hong Kong, China
2 Department of Communication Engineering, College of Information Engineering, Shenzhen University, Guangdong, China

ABSTRACT

Low-density parity-check (LDPC) codes are very powerful error-correction codes with capabilities approaching the
Shannon’s limits. In evaluating the error performance of a LDPC code, the computer simulation time taken becomes a
primary concern when tens of millions of noise-corrupted codewords are to be decoded, particularly for codes with very
long lengths. In this paper, we propose modeling the parity-check matrix of a LDPC code with compressed parity-check
matrices in the check-node domain (CND) and in the bit-node domain (BND), respectively. Based on the compressed
parity-check matrices, we created two message matrices, one in the CND and another in the BND, and two domain conver-
sion matrices, one from CND to BND and another from BND to CND. With the proposed message matrices, the data used
in the iterative LDPC decoding algorithm can be closely packed and stored within a small memory size. Consequently,
such data can be mostly stored in the cache memory, reducing the need for the central processing unit to access the random
access memory and hence improving the simulation time significantly. Furthermore, the messages in one domain can be
easily converted to another domain with the use of the conversion matrices, facilitating the central processing unit to access
and update the messages. Copyright © 2011 John Wiley & Sons, Ltd.

KEYWORDS

compressed parity-check matrices; domain conversion matrices; LDPC codes; simulation time

*Correspondence

Dr Yejun He, PhD, Department of Communication Engineering, College of Information Engineering, Shenzhen University, No. 3688,
Nanhai Road, Nanshan District, Shenzhen City, Guangdong 518060, China.
E-mail: heyejun@ieee.org

1. INTRODUCTION

Low-density parity-check (LDPC) codes were first pro-
posed by Gallager in 1962 [1]. They were considered as
impractical because of their intensive computation require-
ment and lack of efficient computation facilities at that
time. In 1996, the LDPC codes were re-discovered and
were shown to possess Shannon limit-approaching perfor-
mance [2]. Recently, derivatives of LDPC codes have been
adopted in various standards such as IEEE 802.11n, IEEE
802.16e, and DVB-S2 [3,4].

A LDPC code can be represented by a parity-check
matrix (PCM) H or a Tanner graph [5–7]. In the PCM, each
row corresponds to a check node (CN), whereas each col-
umn corresponds to a bit node (BN) in the Tanner graph.
We consider a binary LDPC code, implying that the ele-
ments of H are either 0 or 1. If an element in H is 1, the
corresponding CN and BN in the Tanner graph will be con-
nected; otherwise, those nodes are not connected. Figure 1

illustrates the relationship between a PCM and a Tanner
graph.

In decoding LDPC codes, the message-passing algo-
rithm is most commonly used because it has been proved
to provide very good decoding capabilities [8–10]. Dur-
ing the decoding process, messages are passed from the
bit nodes to the CNs along the connections, and vice versa,
iteratively. Referring to Figure 1, in evaluating the mes-
sage passing from CN0 to BN0, we need to make use of
the BN6-to-CN0 message and the BN7-to-CN0 message.
Similarly, when evaluating the message passing from BN4
to CN3, we have to consider the message sent from CN2 to
BN4. In other words, we need to consider all connections
of each BN or CN repeatedly in decoding a LDPC code.
Moreover, all such connections are represented by the non-
zero elements in the PCM H, and most of the elements in H
are 0’s because of the sparse nature of H. Instead of storing
H entry by entry, a more efficient method should be used
to model H.

Copyright © 2011 John Wiley & Sons, Ltd. 663



LDPC-code simulator using compressed parity-check matrices S. F. Yau et al.

Figure 1. A parity-check matrix and its corresponding Tanner
graph. BN, bit node; CN, check node.

In computer simulations, the linked-list method has been
widely used to model the PCM H, or equivalently the struc-
ture of the Tanner graph, in the decoding process. A link
can be considered as a pointer pointing to another object,
and a linked list consists of objects embedded with these
links. For the given PCM H, the linked list is constructed as
follows. Referring to Figure 2 , each of the non-zero entries
in H (a connection in the Tanner graph) is first represented
by an object. Further, the corresponding BN-to-CN and
CN-to-BN messages are stored in the object. Two objects
are linked if they are next to each other in the same row
or in the same column, and such link information is also
stored in each of the linked objects. Thus, each object in
the linked list contains four direction pointers (links) and
two double-precision floating-point values (BN-to-CN and
CN-to-BN messages). For a 64-bit computer system, each

Figure 2. A linked-list approach to modeling a parity-check
matrix. BN, bit node; CN, check node.

direction pointer is represented by an 8-byte word (also
referred to as a qword), and each double-precision floating-
point value requires 8 bytes for storage. Consequently, each
object requires a memory of 48 bytes for storage. The
total memory requirement for storing all the objects will be
48Nedge bytes whereNedge denotes the number of edges in
the Tanner graph. Moreover, starting from one object, we
can make use of the link information to access an adjacent
object. Note that the link information in the objects of the
linked list can be readily re-created for different PCMs H
without affecting other parts of the simulation program.

In today’s computer architecture, a central processing
unit (CPU) can access a built-in small-size L1 cache mem-
ory with little latency. It can further access a nearby L2
cache via a local bus with a little bit more latency. When
the CPU fetches an instruction or some data, it will attempt
to load the instruction or data from the L1 and L2 caches
first. If the CPU fails to find the target instruction/data
in the cache, a “cache miss” occurs, and the CPU will
access the L3 cache† or even the random access memory
(RAM), which requires a much longer latency compared
with accessing the L1 and L2 caches. Thus, to optimize
the speed of a computer program, one should minimize the
CPU’s need to access data in the L3 cache/RAM. However,
the aforementioned linked-list approach is not optimized
for memory access. In particular, if the decoding algorithm
needs to fetch some data several rows down in the matrix,
it is likely that such data are not readily stored in the cache
and have to be fetched from the L3 cache/RAM. Conse-
quently, the CPU has to spend much time fetching data
from the L3 cache/RAM frequently.

In this paper, we propose compressing a PCM into two
matrices in the check-node domain (CND) and in the bit-
node domain (BND), respectively. Because the compressed
matrices have much smaller sizes compared with the origi-
nal PCM, the matrices and their associated data (BN-to-CN
and CN-to-BN messages) can be readily stored within the
capacity of the cache memory. Thus, during the iterative
decoding process, it will be more likely that the compu-
tation of the updated messages can be completed based
on the data in the cache memory alone. Consequently, the
need for the CPU to access the L3 cache/RAM can be
significantly reduced. Our whole idea is therefore to keep
more data in the cache closer to the CPU.

Furthermore, it is known that the use of pointers can
significantly improve the performance for repetitive oper-
ations in a computer program. Because the decoding of
the LDPC codes involve repetitive operations, the use of
pointers should help in improving the performance of the
simulation program. Here, we will also apply the “pointer”
approach to convert the updated messages associated with
compressed matrices from the CND to the BND, and
vice versa. The aim is to further improve the simulation
time. Our simulation results show that compared with the
linked-list approach, the proposed approach consumes a

†Note that there is no L3 cache in some computer architectures.

664 Wirel. Commun. Mob. Comput. 2013; 13:663–670 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm



S. F. Yau et al. LDPC-code simulator using compressed parity-check matrices

much shorter simulation time in decoding the LDPC codes.
Moreover, the time reduction increases with the size of the
LDPC-code length.

The organization of the paper is as follows. Section 2
describes the details of the proposed approach. In Sec-
tion 3, we present our simulation results, and Section 4
provides the conclusions.

2. PROPOSED APPROACH

2.1. Compressed parity-check matrices

Given a file (with .pcm extension in our program) storing
a PCM, we will first compress it into matrices in the CND
and in the BND, respectively. Moreover, we will take the
maximum row weight and the maximum column weight
into consideration during the CND compression and the
BND compression, respectively. Referring to the PCM in
Figure 2, the number of rows (CNs) is 4, and the num-
ber of columns (BNs) equals 8. Because the maximum row
weight equals 3, the compressed PCM (CPCM) in the CND
(CPCM-CND) will be of size 4�3 (Figure 3). Similarly, the
maximum column weight equals 2, and hence, the CPCM
in the BND (CPCM-BND) will be of size 8�2 (Figure 4).

Referring to Figure 3, in the construction of the CPCM-
CND, the (i ,k)th entry equals j � 1 if the (i ,j )th entry in
the original PCM is the kth non-zero entry in the i th row.
For example, the (3,2)th entry in the CPCM-CND equals
4 because the (3,5)th entry in the original PCM is the sec-
ond non-zero entry in the third row. Similarly, if the (i ,j )th
entry in the original PCM is the l th non-zero entry in the
j th column, the (j ,l)th entry in the CPCM-BND equals
i � 1, as shown in Figure 4. An example is the (6,2)th
entry of the CPCM-BND. It has a value of 2 because the
(3,6)th entry in the original PCM is the second non-zero
entry in the sixth column. Finally, any unfilled entries in
the CPCM-CND and CPCM-BND will be given a value of
�1. The �1 value indicates a “no more connection” status
and is used to prevent the computer program from access-
ing an incorrect memory address for data. It can be seen
that in our examples, there are entries with value �1 in the
CPCM-BND but not in the CPCM-CND.

Note that in our example, the CPCMs are not very much
smaller compared with the original PCM. In practice, the

Figure 3. Formation of the compressed parity-check matrix in
the check-node domain (CPCM-CND).

Figure 4. Formation of the compressed parity-check matrix in
the bit-node domain (CPCM-BND).

PCM is of a much larger size and is very sparse. Thus, the
CPCMs will be much smaller compared with the original
PCM. Consequently, the CPCMs can be mainly stored in
the L1/L2 cache memory, and the probability of a cache
miss will be small. As the CPU does not need to access
the L3 cache/RAM frequently, much simulation time can
be saved.

2.2. Message matrices

Two message matrices (MMs), one in the CND and another
in the BND, will be created to store the messages of all
CNs and BNs. The MM in the CND (MM-CND) will be
of the same size as the CPCM-CND, whereas the MM
in the BND (MM-BND) will be of the same size as the
CPCM-BND.

2.3. Domain conversion matrices

During the iterative decoding process, we need to convert
the updated messages from one domain to another, that is,
from CND to BND and vice versa. Here, we apply the
pointer approach to perform such conversions. Based on
Figures 3 and 4, the CND-to-BND conversion matrix and
the BND-to-CND conversion matrix are readily obtained
as in Figure 5. In fact, the CND-to-BND conversion matrix
is formed by adding an extra entity to each of the entry
in the CPCM-CND, whereas the BND-to-CND conversion
matrix is formed by adding an extra entity to each of the
entry in the CPCM-BND. For example, the (4,3)th entry
in the CPCM-CND equals 7, implying that it corresponds
to BN7, that is, the eighth row of the CPCM-BND. How-
ever, there are more than one entries in that row. Thus,
we need to add an extra entity 1 (shown in parentheses in
the CND-to-BND conversion matrix) to the (4,3)th entry
in the CPCM-CND in order to form the CND-to-BND
conversion matrix, indicating that this entry is pointing
to the (8,1C1)th entry, that is, the (8,2)th entry of the

Wirel. Commun. Mob. Comput. 2013; 13:663–670 © 2011 John Wiley & Sons, Ltd. 665
DOI: 10.1002/wcm



LDPC-code simulator using compressed parity-check matrices S. F. Yau et al.

Figure 5. Formation of the CND-to-BND conversion matrix and
the BND-to-CND conversion matrix. BND, bit-node domain;

CND, check-node domain.

CPCM-BND. Similarly, the (6,1)th entry of the CPCM-
BND equals 1. A simple study shows that this entry should
be given an offset value of 1 in the BND-to-CND con-
version matrix, showing that this entry is pointing to the
(2,2)th entry of the CPCM-CND.

Note that all entries in the conversion matrices are given
as offset values (i.e., with reference to the first column and
the first row), and with the pointer approach, the CPU can
locate the target data much faster.

2.4. Memory requirement

Because 8 bytes are needed to store a double-precision
floating-point message, 8Nedge bytes are required to store
each of the two MMs—one in the CND and another in the
BND. Furthermore, we use 8 bytes to store an element (the
address offset of the memory) in each domain conversion
matrix. Each conversion matrix (CND-to-BND conversion
matrix or BND-to-CND conversion matrix) consumes a
memory of 8Nedge bytes. The total memory usage for stor-
ing the two MMs and the two domain conversion matrices
is therefore equal to 32Nedge bytes.

2.5. Simulation program

The simulation program [11] begins by reading the parity
check matrix file with .pcm extension to form the CPCM-
CND, CPCM-BND, CND-to-BND conversion matrix, and
BND-to-CND conversion matrix. Then, a codeword cor-
rupted by additive white Gaussian noise is generated.
Based on the corrupted signal vector, the initial probability
ratio for each bit node is evaluated. Using the PCM shown
in Figures 1 to 4 as an example, we denote the probability
ratios for different bit nodes by symbols A to H, as shown
in Table I. Based on these initial messages, the MM in the
BND (MM-BND) is formed, as shown in Figure 6.

Table I. Initial probability ratios of the bit nodes.

Bit-node number 0 1 2 3 4 5 6 7

Initial probability ratio A B C D E F G H

Figure 6. Initialization step and conversion of messages from
bit-node domain (BND) to check-node domain (CND).

Using the BND-to-CND conversion matrix, the entries
in the MM-BND are copied appropriately to entries in the
MM in the CND (MM-CND), which contains all zeros ini-
tially, as illustrated in Figure 6. Table II shows the memory
allocation of the MM-CND. Note that the entries in the
MM-CND are located consecutively such that the CPU
can access and update them more efficiently. During the
first half of the iteration, the messages of the CNs are
updated using the standard sum–product algorithm [8] and
are shown as symbols W to Z in Table II. Using the CND-
to-BND conversion matrix, the entries in the MM-CND
are then used to update the entries in the MM-BND, as
illustrated in Figure 7. Table III shows the consecutive
memory allocation of the MM-BND. As mentioned ear-
lier, the aim is to allow the CPU to access and update them
more efficiently. During the second half of the iteration,
the messages of the bit nodes are updated using the stan-
dard sum–product algorithm and are shown as symbols I to
P in Tables III and IV.

At the end of the iteration, all bit-node symbols will be
estimated using hard decisions. If the decoded codeword is
a valid one, the iteration will stop. Otherwise, another iter-
ation will start by using the updated bit-node messages. If
a valid codeword is not found within a specified number
of iterations, say 50 iterations, the iteration will also stop,
and the decoding is declared as a failure. Then, the next
corrupted codeword will be generated and decoded until
a termination condition is satisfied; for example, 10 000
corrupted codewords have been decoded.

3. RESULTS AND DISCUSSIONS

To demonstrate the performance of the proposed method,
a LDPC decoder has been simulated under the � 64 envi-
ronment shown in Table V. Five different LDPC codes, as

666 Wirel. Commun. Mob. Comput. 2013; 13:663–670 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm



S. F. Yau et al. LDPC-code simulator using compressed parity-check matrices

Table II. Memory allocation of the message matrix in the check-node domain (MM-CND).

CN0 CN1 CN2 CN3

MAO 0 1 2 3 4 5 6 7 8 9 10 11
BN no. 0 6 7 1 5 6 2 4 5 3 4 7
Value A G H B F G C E F D E H
After 1st-half iteration W X Y Z

BN, bit node; CN, check node; MAO, message address offset.

Figure 7. Conversion of messages from check-node domain
(CND) to bit-node domain (BND).

shown in Table VI, have been used in our simulations. They
all have a code rate of 0:5, whereas the code-length ranges
from 1008 to 106. Moreover, they are constructed with the
progressive-edge-growth algorithm [12]. The maximum
number of iterations taken to decode each codeword equals
200. If a valid codeword is not found at the end of 200
iterations, a decoding failure (block error) will be declared.

In Table VII, we show the simulated block error rates
(BLERs) using the linked-list approach and our proposed
CPCM approach. It can be seen that both approaches give
the same BLERs. For each signal-to-noise ratio (SNR), the
simulation continues until 100 block errors are found. For
Codes I to IV, SNRs of 0.5 dB to 0.9 dB in steps of 0.1 dB
are used, whereas for Code V, SNRs of 0.5 dB to 0.7 dB

Table IV. Updated messages of the bit-node messages after
the first iteration.

Bit-node number 0 1 2 3 4 5 6 7

Updated probability ratio I J K L M N O P

Table V. Configurations of the computer hardware and
software.

CPU Core i7 920
Clock speed 2.67 GHz
L1 cache for each core 32 KB (data) and 32 KB

(instruction)
L2 cache for each core 256 KB
L3 cache shared among cores 8 MB
RAM 6 GB
Memory speed 1.6 GHz
Programming language C
OS Windows 7 Enterprise

64 bits

CPU, central processing unit; OS, operating system; RAM, random
access memory.

in steps of 0.1 dB are used. For Code V having a SNR of
0.8 dB, no block errors have been detected over 1000 sent
codewords. However, the time taken is already too long, so
we decide to stop the simulations after decoding the 1000
codewords.

Table VIII compares the time consumed per iteration
for the linked-list approach and our CPCM approach.
The results show that the proposed CPCM approach takes
only 24:2% to 64:4% of the time required by the linked-
list approach for each iteration. In other words, the new
approach can improve the simulation time significantly,
with a reduction of over 35% when the code length is 1008
to a reduction of more than 75% when the code-length is
106. The improvement of the proposed approach over the
linked-list approach can be analyzed as follows.

Table III. Memory allocation of the message matrix in the bit-node domain (MM-BND).

BN0 BN1 BN2 BN3 BN4 BN5 BN6 BN7

MAO 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
CN no. 0 �1 1 �1 2 �1 3 �1 2 3 1 2 0 1 0 3
Value W 0 X 0 Y 0 Z 0 Y Z X Y W X W Z
After 2nd-half iteration I J K L M N O P

BN, bit node; CN, check-node; MAO, message address offset.

Wirel. Commun. Mob. Comput. 2013; 13:663–670 © 2011 John Wiley & Sons, Ltd. 667
DOI: 10.1002/wcm



LDPC-code simulator using compressed parity-check matrices S. F. Yau et al.

Table VI. Types of rate—0:5 low-density parity-check codes used in the simulations and the total memory storage requirement.

Code Type Size No. of edges Total memory requirement Total memory requirement
Nedge D 48Nedge bytes D 32Nedge bytes

(linked-list method) (proposed method)

I Irregular 1008� 504 3716 174 KB 116 KB
II Irregular 2304� 1152 7200 337 KB 225 KB
III Irregular 10;008� 5004 37;214 1744 KB 1163 KB
IV Regular 105 � 5 � 104 3 � 105 14 MB 9:4 MB
V Irregular 106 � 5 � 105 3;305;703 155 MB 103 MB

Table VII. Simulated block error rate (BLER) of the low-density parity-check codes using the linked-list approach and the compressed
parity-check matrix (CPCM) approach. Both the linked-list approach and the CPCM approach produce the same BLERs.

Code SNR = 0:5 dB SNR = 0:6 dB SNR = 0:7 dB SNR = 0:8 dB SNR = 0:9 dB

I 0:877 0:725 0:685 0:592 0:435
II 0:962 0:943 0:877 0:690 0:546
III 0:980 0:901 0:667 0:329 0:106
IV 1:000 1:000 1:000 1:000 1:000
V 1:000 1:000 0:901 No errors found NA

NA, not applicable; SNR, signal-to-noise ratio.

Table VIII. Average time consumed per iteration in �s for
the LDPC codes. Results in bracket show the time taken by
the CPCMs approach when normalized by the time taken by

the Linked-list approach.

Code Linked-list approach CPCMs Approach
(microseconds) (microseconds)

I 188 121.64:4%/
II 375 229.61:1%/
III 2248 1191.53:0%/
IV 30;440 9548.31:4%/
V 439;110 106;095.24:2%/

Table VI shows the total memory requirement under the
linked-list approach and the proposed CPCM approach for
the five given codes. In all cases, the proposed method
requires a smaller amount of memory, which implies a
smaller probability of a “cache miss”. We then consider
Codes I, II, and III. Table VI shows that the total mem-
ory required to store the objects in the linked-list approach
ranges from 174 KB to 1744 KB, whereas the total mem-
ory for the proposed CPCM approach ranges from 116 KB
to 1163 KB. Because L2 cache has a size of only 256 KB,
it will not be able to store all the instructions and data to be
used by the CPU. Yet, in these cases, the objects/data can
be readily stored in L3 cache, which possesses an 8 MB
capacity. Whenever an instruction or data needed by the
CPU is not available in L1 and L2 cache, a “cache miss”
occurs.‡ Then, the L2 cache has to fetch instructions/data
from the L3 cache/RAM. Suppose the CPU requires some

‡A larger L1 and L2 cache will reduce the occurrence of a “cache

miss”, and the simulation time will be shorter.

data, which are stored in the L3 cache. According to the
specifications of Core i7, L2 cache will then collect a total
of 64 bytes of data from L3 cache including the required
data. As each object in the linked list has a size of 48 bytes,
the L2 cache will be able to load one object from the L3
cache at one time. However, using the proposed CPCM
approach, the L2 cache will be able to load eight con-
secutive double-precision floating-point messages from the
L3 cache every time because each message in the MMs is
of size 8 bytes. Because these consecutive messages will
be used by the CPU in the following cycles, it is guar-
anteed that “cache miss” will not occur in the next few
steps. Consequently, the proposed CPCM approach will
reduce the occurrences of “cache miss” significantly. As
each “cache miss” is followed by a number of clock cycles
spent to fetch the data from the L3 cache, the proposed
CPCM approach reduces the simulation time by reducing
the overall number of cache misses. Furthermore, as the
total memory used to store the objects in the linked-list
approach increases from 174 KB (for Code I) to 337 KB
(for Code II) and to 1744 KB (for Code III), cache misses
will occur more frequently. Table VIII indicates that using
the CPCM approach saves an increasing proportion of time
for Code I to Code II and to Code III because (i) the mem-
ory requirement for the CPCM approach is smaller and
(ii) the CPCM approach will reduce the occurrences of
cache miss by fetching eight consecutive double-precision
floating-point messages from L3 cache at each time.

Finally, we consider Codes IV and V, which require a
total memory of 14 MB and 155 MB, respectively, in the
linked-list approach. As the memory exceeds the capac-
ity of L3 cache, the objects/data will have to be stored in
the RAM. Same as that discussed earlier and compared
with the linked-list approach, the CPCM approach will
allow more consecutive double-precision floating-point

668 Wirel. Commun. Mob. Comput. 2013; 13:663–670 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm



S. F. Yau et al. LDPC-code simulator using compressed parity-check matrices

messages to be loaded from the RAM to the L2/L3 cache
at each time. In addition, the time taken to load data from
RAM is longer compared with loading data from L3 cache.
Thus, we can observe an even higher reduction in simula-
tion time by using the CPCM approach when the mem-
ory used to store the objects in the linked-list approach
increases from 1744 KB (for Code III) to 14 MB (for Code
IV) and to 155 MB (for Code V).

4. CONCLUSIONS

This paper proposes a new approach based on CPCM to
simulate a LDPC decoder. The method can significantly
reduce the need of the CPU to access L3 cache or the main
memory, and hence, a large amount of time can be saved
during the simulations. Results show that compared with
the commonly used linked-list approach, the new approach
provides substantial speed-up improvements, ranging from
35% to 75% reduction in computation time. Moreover, the
speed-up improvement becomes more remarkable as the
code-length increases. The simulation program is readily
downloaded from [11] and is free to use.

Note that in the case of field-programmable gate array
(FPGA)/ application-specific integrated circuit (ASIC)
implementation of a LDPC decoder, the memories will not
be categorized; that is, there will be no L1/L2/L3 cache
and RAM, and nothing similar to “cache miss” will occur.
Moreover, the memory requirement is much more stringent
than in computer simulations. Thus, more modifications to
the proposed CPCM approach have to be done before it can
be implemented in FPGA/ASIC. For example, we have to
define the exact memory location where each message will
be retrieved/stored in the FPGA/ASIC implementation. In
addition to memory, other considerations include complex-
ity (the number of logic gates), throughput, error perfor-
mance, and latency will have to be taken into consideration
when implementing a LDPC decoder with FPGA/ASIC.

ACKNOWLEDGEMENTS

The work described in this paper was partially supported
by a grant from the Research Grants Council of the Hong
Kong SAR, China (project no. PolyU 521809) and by the
National Natural Science Foundation of China (grant no.
60972037).

REFERENCES

1. Gallager R. Low-density parity-check codes. IEEE
Transactions on Information Theory 1962; 8(1):
21–28.

2. MacKay DJC, Neal RM. Near Shannon limit perfor-
mance of low density parity check codes. Electronics
Letters 1996; 32(18): 1645–1646.

3. IEEE. IEEE standard for local metropolitan area net-
works. Part 16: Air interface for fixed and mobile
broadband wireless access systems. Amendment 2:
physical and medium access control layers for com-
bined fixed and mobile operation in licensed bands. In
IEEE Standard 802.16e-2005. IEEE Press: New York,
NY, 2006.

4. IEEE. Draft IEEE standard for local metropolitan
networks-specific requirements. Part 11: wireless
LAN medium access control (MAC), and physical
layer (PHY) specifications: enhancements for higher
throughput. In IEEE P802.11n/D1.0. IEEE Press: New
York, NY, 2006.

5. Ryan WE. An introduction to LDPC codes. In Coding
and Signal Processing for Magnetic Recording Sys-
tems, Vasic B, Kurtas EM (eds). CRC Press, 2005,
Chapter 36.

6. Shokrollahi A. LDPC codes: an introduction. In
Coding, Cryptography and Combinatorics, Feng K,
Niederreiter H, Xing C (eds). Birkhäuser, Boston,
2004; 85–112.

7. Richardson TJ, Urbanke RL. The capacity of low-
density parity-check codes under message-passing
decoding. IEEE Transactions on Information Theory
2001; 47(2): 599–618.

8. Richardson T, Urbanke R. Modern Coding Theory.
Cambridge University Press: Cambridge, 2008.

9. Zheng X, Lau FCM, Tse CK, He Y, Hau SF. Appli-
cation of complex-network theories to the design of
short-length LDPC codes. IET Communications 2009;
3(10): 1569–1577.

10. Zheng X, Lau FCM, Tse CK. Constructing short-
length irregular LDPC codes with low error floor.
IEEE Transactions on Communications Oct 2010;
58(10): 2823–2834.

11. Yau SF, Wong TL, Lau FCM. Fast simulation program
for LDPC codes, 2010. Available at http://francis.eie.
polyu.edu.hk/.

12. Hu XY, Eleftheriou E, Arnold DM. Regular and irreg-
ular progressive edge-growth Tanner graphs. IEEE
Transactions on Information Theory 2005; 51(1):
386–398.

AUTHORS’ BIOGRAPHIES

Shek F. Yau obtained his BEng (Hons) degree in Elec-
tronic and Information Engineering from Hong Kong Poly-
technic University, Hong Kong in 2010. He is now working
in the industry.

Tan L. Wong obtained his BEng (Hons) degree in Elec-
tronic and Information Engineering from Hong Kong Poly-
technic University, Hong Kong in 2010. He is now working
in the industry.

Wirel. Commun. Mob. Comput. 2013; 13:663–670 © 2011 John Wiley & Sons, Ltd. 669
DOI: 10.1002/wcm



LDPC-code simulator using compressed parity-check matrices S. F. Yau et al.

Francis C. M. Lau received the
BEng (Hons) degree with first class
honors in Electrical and Electronic
Engineering and the PhD degree from
King’s College London and Univer-
sity of London, UK, in 1989 and
1993, respectively.

He is a professor and associate
head at the Department of Electronic

and Information Engineering, The Hong Kong Polytechnic
University, Hong Kong. He has published over 200 papers,
including over 80 journal papers and over 120 conference
papers. He is also the co-author of Chaos-based Digi-
tal Communication Systems (Heidelberg: Springer-Verlag,
2003) and Digital Communications with Chaos: Multiple
Access Techniques and Performance Evaluation (Oxford:
Elsevier, 2007). He is a co-holder of two granted US
patents and one pending US patent. His main research
interests include channel coding, applications of complex-
network theories, cooperative networks, wireless sensor
networks, chaos-based digital communications, and wire-
less communications.

He served as an associate editor for IEEE Transac-
tions on Circuits and Systems II in 2004–2005 and IEEE
Transactions on Circuits and Systems I in 2006–2007. He
was also an associate editor of Dynamics of Continuous,
Discrete and Impulsive Systems, Series B from 2004 to
2007 and was a co-guest editor of Circuits, Systems and
Signal Processing for the special issue “Applications of
Chaos in Communications” in 2005. He is currently serv-
ing as a guest associate editor of International Journal of
Bifurcation and Chaos.

Yejun He received his PhD degree
in Information and Communication
Engineering from Huazhong Uni-
versity of Science and Technology
(HUST) in 2005, MS degree in Com-
munication and Information System
from Wuhan University of Technol-
ogy (WHUT) in 2002, and his BS
degree from Huazhong University of

Science and Technology in 1994. From September 2005 to
March 2006, he was a research associate at the Department

of Electronic and Information Engineering, The Hong
Kong Polytechnic University. From April 2006 to March
2007, he was a research associate at the Department
of Electronic Engineering, Faculty of Engineering, The
Chinese University of Hong Kong.

Dr. He is currently an Associate Professor at Shen-
zhen University, China. His research interests include
channel coding and modulation, multiple-input multiple-
output orthogonal frequency division multiplexing wireless
communication, space-time processing, smart antennas,
and so on. Dr. He is a senior member of IEEE, a senior
member of China Institute of Communications. He is also
serving/served as a reviewer/technical program committee
member/session chair for various journals and conferences,
including IEEE Transactions on Vehicular Technology,
IEEE Communications Letters, International Journal of
Communication Systems, IEEE VTC (Springs of 2008
and 2009), IEEE ICCCAS (2007, 2008, and 2009), WRI
CMC2009, ICST ChinaCom (2009 and 2010), APCC
(2009 and 2010), ACM IWCMC2010, IEEE WiMob2009,
and IEEE CSE2010. He served as the organizing com-
mittee vice chair of the 2010 International Conference on
Communications and Mobile Computing (CMC2010) and
an editor of the CMC2010 Proceedings. He is acting as
the publicity chair of the 2011 International Conference on
Communications and Mobile Computing (CMC2011).

670 Wirel. Commun. Mob. Comput. 2013; 13:663–670 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm


